skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Ruichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 30, 2026
  2. Abstract In this paper, we explore the non-asymptotic global convergence rates of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method implemented with exact line search. Notably, due to Dixonโ€™s equivalence result, our findings are also applicable to other quasi-Newton methods in the convex Broyden class employing exact line search, such as the Davidon-Fletcher-Powell (DFP) method. Specifically, we focus on problems where the objective function is strongly convex with Lipschitz continuous gradient and Hessian. Our results hold for any initial point and any symmetric positive definite initial Hessian approximation matrix. The analysis unveils a detailed three-phase convergence process, characterized by distinct linear and superlinear rates, contingent on the iteration progress. Additionally, our theoretical findings demonstrate the trade-offs between linear and superlinear convergence rates for BFGS when we modify the initial Hessian approximation matrix, a phenomenon further corroborated by our numerical experiments. 
    more » « less
  3. We study the problem of finding an ๐œ€-first-order stationary point (FOSP) of a smooth function, given access only to gradient information. The best-known gradient query complexity for this task, assuming both the gradient and Hessian of the objective function are Lipschitz continuous, is O(๐œ€โˆ’7/4). In this work, we propose a method with a gradient complexity of O(๐‘‘1/4๐œ€โˆ’13/8), where ๐‘‘ is the problem dimension, leading to an improved complexity when ๐‘‘ = O(๐œ€โˆ’1/2). To achieve this result, we design an optimization algorithm that, underneath, involves solving two online learning problems. Specifically, we first reformulate the task of finding a stationary point for a nonconvex problem as minimizing the regret in an online convex optimization problem, where the loss is determined by the gradient of the objective function. Then, we introduce a novel optimistic quasi-Newton method to solve this online learning problem, with the Hessian approximation update itself framed as an online learning problem in the space of matrices. Beyond improving the complexity bound for achieving an ๐œ€-FOSP using a gradient oracle, our result provides the first guarantee suggesting that quasi-Newton methods can potentially outperform gradient descent-type methods in nonconvex settings. 
    more » « less
    Free, publicly-accessible full text available June 15, 2026
  4. Stochastic second-order methods are known to achieve fast local convergence in strongly convex optimization by relying on noisy Hessian estimates to precondition the gradient. Yet, most of these methods achieve superlinear convergence only when the stochastic Hessian noise diminishes, requiring an increase in the per-iteration cost as time progresses. Recent work in \cite{na2022hessian} addressed this issue via a Hessian averaging scheme that achieves a superlinear convergence rate without increasing the per-iteration cost. However, the considered method exhibits a slow global convergence rate, requiring up to ~O(ฮบ^2) iterations to reach the superlinear rate of ~O((1/t)^{t/2}), where ฮบ is the problem's condition number. In this paper, we propose a novel stochastic Newton proximal extragradient method that significantly improves these bounds, achieving a faster global linear rate and reaching the same fast superlinear rate in ~O(ฮบ) iterations. We achieve this by developing a novel extension of the Hybrid Proximal Extragradient (HPE) framework, which simultaneously achieves fast global and local convergence rates for strongly convex functions with access to a noisy Hessian oracle. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Stochastic second-order methods accelerate local convergence in strongly convex optimization by using noisy Hessian estimates to precondition gradients. However, they typically achieve superlinear convergence only when Hessian noise diminishes, which increases per-iteration costs. Prior work [arXiv:2204.09266] introduced a Hessian averaging scheme that maintains low per-iteration cost while achieving superlinear convergence, but with slow global convergence, requiring ๐‘‚ ~ ( ๐œ… 2 ) O ~ (ฮบ 2 ) iterations to reach the superlinear rate of ๐‘‚ ~ ( ( 1 / ๐‘ก ) ๐‘ก / 2 ) O ~ ((1/t) t/2 ), where ๐œ… ฮบ is the condition number. This paper proposes a stochastic Newton proximal extragradient method that improves these bounds, delivering faster global linear convergence and achieving the same fast superlinear rate in only ๐‘‚ ~ ( ๐œ… ) O ~ (ฮบ) iterations. The method extends the Hybrid Proximal Extragradient (HPE) framework, yielding improved global and local convergence guarantees for strongly convex functions with access to a noisy Hessian oracle. 
    more » « less
    Free, publicly-accessible full text available November 11, 2025
  7. Free, publicly-accessible full text available December 10, 2025
  8. Second-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second order updates within a lower-dimensional subspace, giving rise to \textit{subspace second-order} methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $$d$$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $$\bigO\left(\frac{1}{mk}+\frac{1}{k^2}\right)$$ for solving convex optimization problems. Here, $$m$$ represents the subspace dimension, which can be significantly smaller than $$d$$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the \emph{Krylov subspace} associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems. 
    more » « less
  9. In this paper, we present an accelerated quasi-Newton proximal extragradient method for solving unconstrained smooth convex optimization problems. With access only to the gradients of the objective function, we prove that our method can achieve a convergence rate of $${\bigO}\bigl(\min\{\frac{1}{k^2}, \frac{\sqrt{d\log k}}{k^{2.5}}\}\bigr)$$, where $$d$$ is the problem dimension and $$k$$ is the number of iterations. In particular, in the regime where $$k = \bigO(d)$$, our method matches the \emph{optimal rate} of $$\mathcal{O}(\frac{1}{k^2})$$ by Nesterov's accelerated gradient (NAG). Moreover, in the the regime where $$k = \Omega(d \log d)$$, it outperforms NAG and converges at a \emph{faster rate} of $$\mathcal{O}\bigl(\frac{\sqrt{d\log k}}{k^{2.5}}\bigr)$$. To the best of our knowledge, this result is the first to demonstrate a provable gain for a quasi-Newton-type method over NAG in the convex setting. To achieve such results, we build our method on a recent variant of the Monteiro-Svaiter acceleration framework and adopt an online learning perspective to update the Hessian approximation matrices, in which we relate the convergence rate of our method to the dynamic regret of a specific online convex optimization problem in the space of matrices. 
    more » « less
  10. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)